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ANOMALOUSLY LARGE
�

-AXIS CRITICAL CURRENT DENSITY
IN Bi2212 THIN-FILM STACKS: INTERPRETATION
IN TERMS OF SUPERCONDUCTING FILAMENTS
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In Bi2212 thin-film based stacks, � -axis critical currents larger than the depairing critical
current have been observed. It has been proposed recently that flux lines bound to screw
dislocations with Burgers vectors parallel to the � axis of layered superconductors can lead to
such an enhancement of the � -axis critical current, if the superconducting samples are small
with respect to the � -axis penetration depth. We provide further arguments in favour of this
interpretation.

PACS: 74.60.-w, 74.60.Jg, 74.76.Bz

1 Introduction

The cuprate superconductors consist of �
	 -plane superconducting layers weakly coupled in the
perpendicular ( � -axis) direction [1]. Thus, the current density describing the flow between two
superconducting layers with a gauge-invariant phase difference ��
���� ��� is������������� ��
 ��� ��� � (1)

where
� �

is the depairing critical current density in the � -axis direction.
The layered structure of the cuprates results in a large �
	 plane vs. � axis anisotropy of the

electron motion (for a review, see [2]). In particular, the penetration depth for currents flowing
in the �
	 plane is much shorter than for currents along the � axis, ! �"� # ! . There is a simple
relation between

���
and ! . In fact, within linear response theory ��
 ��� ��� #%$

and we can therefore
write Eq. (1) in the form of the London equation,���'& $(*) ! � +-,/. &'0 )13254 
47698 � (2):

E-mail address: guba@fmph.uniba.sk;
E-mail address: hlubina@fmph.uniba.sk

0323-0465/00 c
<

Institute of Physics, SAS, Bratislava, Slovakia 591



592 P Guba, R Hlubina

where 0 ) is the superconducting flux quantum. By comparing Eqs. (1), (2), the depairing critical
current density along the � axis can be written��� � 0 )1�2 (*) ! � � � (3)

where
�

is the distance between the neighbouring superconducting layers.
Because of its implications for the interlayer pairing theory of Anderson, the � axis penetra-

tion depth ! has received much experimental attention recently. There is consensus that ! is a
strongly doping-dependent quantity which increases with decreasing the number of holes in the
CuO � planes. For Bi � Sr � CaCuO � (Bi2212) which we discuss here, there is some scatter in the
absolute values of ! . For instance, according to the recent measurements of Gaifullin et al. and
Shovkun et al., !�� 300 ( m for underdoped samples with � � �����

K [3], 150 ( m for optimally
doped samples [3, 4], and 50 ( m for overdoped samples with � � ���
	

K [4], whereas an older
paper by Jacobs et al. reports !�� 40 ( m for an optimally doped sample [5]. We take !�� 40( m and

� � $�

A , and obtain an upper bound on the � axis depairing critical current in Bi2212

at all dopings
� ��� $���$�� $��
�

A/cm � . This upper bound is consistent with direct critical current
measurements. In fact, for single crystals,

� ����� ���
A/cm � has been reported for underdoped

and optimally doped samples [6] (see also [1]), whereas for overdoped crystals
� ����� � 1 � $����

A/cm � [1] has been found. For carefully prepared thin films, Inoue et al. have reported
� �

be-
tween 10 A/cm � (for underdoped films) and

$�� $�� �
A/cm � (for overdoped films) [7]. It is worth

pointing out that the critical current densities measured in [7] are in a very good agreement with
Eq. (3) and the � -axis penetration depths reported in [3, 4].

The work reported here is motivated by the experimental study of Xiao et al., who have
observed � -axis critical currents in Bi2212 thin films as large as

1 � $�� �
A/cm � [8], well above

our estimated upper bound on the depairing critical current. Usually, the maximal dissipationless
current (critical current) which can be passed through a type-II superconductor is much smaller
than the depairing current, and is determined by the complex physics of vortices and pinning.
In our opinion, the key to solving this paradox is that the �
	 -plane dimensions of the samples
studied by Xiao et al. were smaller than ! .

In this paper we further elaborate on the recently proposed interpretation [9] of the exper-
iment of Xiao et al. in terms of superconducting filaments in small samples. The plan of the
paper is as follows. In Section 2 we explain why flux lines bound to screw dislocations can be
viewed upon as superconducting filaments. In Section 3 we discuss the interaction between the
screw dislocation and the flux line and show that it is, contrary to the generic case in low- � �
superconductors, attractive. In Section 4 we study whether, even for large cross-section areas,
the dislocations close to the �
	 -plane circumference of the superconducting wire can lead (due
to a possibly imperfect screening) to a finite contribution to the � -axis supercurrent.

2 Superconducting filaments

Xiao et al. have measured the � -axis critical currents on thin-film based stacks depicted schemat-
ically in Fig. 1. The height ! of the stacks was 80-200 nm, while their cross-section area was
between 2

�
2 ( m � and 50

�
50 ( m � . The films were nearly perfectly epitaxial, as indicated by

the transmission electron microscopy and rocking curve measurements.
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Fig. 1. The thin-film based stack studied by Xiao et al. [8]. The current � is fed into the � -axis oriented thin
film and is collected in a gold contact (shaded area) on top of the stack with height � . A superconducting
filament straddling the stack is shown schematically.

We believe the observed high critical current densities were due to linear paths of strong
superconductivity straddling the entire height of the stacks, which we call superconducting fil-
aments. In order to justify this hypothesis, we have to show that (i) in the thin films, there
exist linear defects along which such filaments could form and (ii) the linear defects enable the
formation of the superconducting filaments.

(i) In any crystal at a finite temperature, there exist natural linear defects: dislocations. In
particular, it has been shown some time ago that screw dislocations are quite common in cuprate
thin films [10].

(ii) If a flux quantum is spontaneously attached to a screw dislocation whose Burgers vector
is parallel to the � axis, then the same current � ) which circulates around the center of the flux
quantum adds also to the � -axis supercurrent, because the current distribution resembles that
of a solenoid with radius � ! �"� . In a macroscopic description averaging over distances larger
than ! �"� , the current density due to the bound state of the dislocation and the flux quantum is� �	� � � � � ��
 with

��� � ) � � �
�/&�� ) 
 , where
� ) is the in-plane coordinate of the vortex and

� ) � 0 ) �1�2 (*) ! � �"� � ) +�� �"�! �"� 8 �
(4)

Here
�

is the � -axis lattice constant of the superconductor,
� �"� is the in-plane coherence length,0 ) is the superconducting flux quantum, and

� ) is the zero-order Macdonald function. Thus, a
superconducting filament is formed.

Finally, we come to the role played by the cross section of the stack. In a stack with an
infinite cross section, the current � ) carried by the filament in the � -axis direction is completely
screened by a current

& � ) along the � axis [11], in order that far away from the dislocation the
magnetic field � � �

, as it should be in a superconductor. However, since this latter screening
current is distributed on the length scale � ! , it is clear that for stacks with �
	 -plane dimensions
much less than ! the screening current cannot develop and the filament does contribute to the� -axis supercurrent.

3 Pinning by the screw dislocation

In order to show that the filament picture applies to the experiment of Xiao et al., we have
to make sure that the screw dislocations do not repel the flux lines. In our original paper [9],
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we have considered two contributions to the pinning force due to screw dislocations, both of
which are attractive: (i) an interaction of purely electromagnetic origin discovered by Ivlev and
Thompson [12], and (ii) the core pinning interaction (see [13] for a classification of pinning
forces), which should be strong due to the

�
-wave symmetry of pairing in the cuprates.

However, there exist another contributions to the interaction between dislocations and flux
lines, which are due to the mutual influence of non-zero strains around the dislocations and of
the non-vanishing difference of elastic properties in the normal and superconducting states [13].
Such interactions are usually repulsive in conventional superconductors [14] and have not been
included in our original paper.

In general, there exist two mechanisms of pinning by the elastic energy: “the volume effect”
and “the second-order interaction” [13]. The volume effect comes from basic thermodynamics:
the volume change � � of an element of a superconductor between the normal and superconduct-
ing states in the presence of a finite pressure � due to the dislocation results in the change of
energy

& � � � . However, since the stress field of the screw dislocation is pure shear, there is no
volume effect in our case [13].

The second-order interaction is due to the change in elastic constants. The strain field at a
distance � from the screw dislocation is � � ��� 2 � and the elastic energy per unit length of the
dislocation is (assuming tetragonal symmetry)

���
	 �
��� � $1 � � � � � � � � � � (5)

Note that the elastic modulus
� � � is a function of

�
, and the form of

� � � �
� 
 depends on the
position of the flux line. The difference of the elastic energy for a flux line coinciding with
the dislocation and far apart from it, � � �
	 �����

, defines the interaction energy of the flux line and
dislocation. A simple estimate using Eq. (5) yields� � �
	 �
��� ��� ���� � & ���� ��� � ��� 2 
 ��� � � � � � 
 �
where � is a cut-off of the order of the in-plane lattice constant, and

� �� � � � �� � are the elastic
moduli in the normal and superconducting states, respectively. In simple elemental supercon-
ductors such as Nb, Pb, and V, the elastic moduli decrease when the sample is cooled to the
superconducting state [15]. Thus � � �
	 ������� �

and the dislocations repel the flux lines.
Unfortunately, we are not aware of a detailed study of the elastic moduli in Bi2212. But in

La � �"! Sr ! CuO � , the situation seems to be reverted with respect to the elemental superconductors
and most of the elastic moduli increase in the superconducting state [16]. The

� � � modulus,
on the other hand, does not change at � �

within the resolution of the experiment [16]. If we
assume that Bi2212 behaves in a similar way, we are led to conclude that pinning to � -axis screw
dislocations by the elastic energy is negligible in the cuprates.

Finally, a recent study by Dam et al. [17] seems to provide a direct experimental confirmation
of the attractive total interaction between the flux lines and � -axis screw dislocations. In fact,
Dam et al. have found that the in-plane critical current of YBa � Cu � O # thin films is independent
of the transverse magnetic field $ for $ � $&% , where the characteristic field $&% � � � ��'�( � ��	 0 ) ,
and

'�( � ��	 is the dislocation density. This demonstrates that nearly every dislocation is able to pin
a flux line. Moreover, the pinning must be by attraction, since for a repulsive interaction, the
critical current should decrease with increasing $ even for $ � $)% .
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Fig. 2. Sketch of the physical system that is being modelled. A superconducting slab is localized between
two semi-infinite regions occupied by the vacuum. An infinitely thin electrically isolated wire carries the
current � � along the positive � axis.

4 Filaments close to the superconductor surface

In [9] it was shown that, for superconductors whose cross section is a half-plane, the screening
current exactly cancels the current carried by the filament, irrespective of the distance of the screw
dislocation from the planar surface of the superconductor. In this Section we discuss the question
about the influence of the superconductor surface on the screening current in more detail. Solving
for the current distribution around a screw-dislocation source in a superconducting slab, we show
that perfect screening does take place even if one of the dimensions of the cross section is much
smaller than ! , provided the other dimension of the cross section is sufficiently large (infinite in
our example). In addition, we study the asymptotic behaviour of the screening current at large
distances from the screw dislocation. We find that, unlike in the bulk where the screening current
decays exponentially at large distances from the source, in the presence of a surface the screening
current exhibits only a power law decay.

The physical system to be investigated is illustrated in Fig. 2. In a Cartesian frame of ref-
erence

��� ��� � 6 
 , the superconducting slab extends from
� � & �

to
� � �

, and is infinitely
elongated in both the � and 6 directions. The regions

� � & �
and

� � �
are occupied by

the vacuum. We model the flux line bound to the screw dislocation by an infinitely thin elec-
trically isolated wire carrying the current � ) along the (positive) 6 axis. Our aim is to find the
supercurrent

�
which screens the magnetic field � generated by the wire.

Let us introduce a vector potential � such that � ��� � � . The symmetry of the problem
allows us to assume � � � � � � � , 
 , where

, � , ��� �	� 
 . Note that in our gauge
��
 � � �

.
Making use of Ampere’s law

� � � � (9) � and of the London equation
� � & , � (9) ! � , the

equations for

,
in the superconducting slab (

& � � � � �
) and in the vacuum (

� � & �
or
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� � �
) are found to be, respectively,
� ! � � & � � 
 , � (*) � ) � � � 
 � � � 
 � (6)� � , � � �

(7)

Since we are searching only for even solutions

, ��� �	� 
 � , � & � �	� 
 , we can restrict our study
to the region

� � �
and we have to require that 4 , � 4 � � !�� ) vanishes. The system of Eqs. (6),

(7) is closed with the boundary conditions requiring the continuity of

,
and 4 , � 4 � across the

boundary
� � �

. We enforce also

,�� �
as
� ���

and �
�����

.
Eq. (7) is autonomous in

�
and � , and the corresponding domain of interest is unbounded in

� and in the positive direction of
�

. Therefore, the general solution to Eq. (7) is separable and
can be expressed as, ��� �	� 
 � 	 12 ��
) �
� ������� � � � � 
�� � ��� ! ����� � (8)

Eq. (6) is also autonomous in
�

and � . However, the domain is unbounded in � only, and
hence the general solution for

& � � � � �
can be written as, ��� �	� 
 � , � � � � ��� ��� 
�� ,�� � � ��� ��� 
 (9)

with , � � � � ��� �	� 
 � (*) � )1�2 � )! �" � � � � �! # � (10),$� � � ��� �	� 
 � 	 12 ��
) �
� 	 � �%� � � � � 
 ��� �'& � � " � � � ! � � 
 � (11)

Note that the singular part of Eq. (9),

, � � � � , represents a particular solution to the inhomogeneous
Eq. (6). Let us point out that Eq. (9) is (by construction) even in

�
, as it should be.

Next, let us define the Fourier expansion coefficients � � and
� � through the following expres-

sions , � � � � � � �	� 
 � 	 12 � 
) �
� �(���%� � � � � 
 �4 , � � � �4 � � � �	� 
 � 	 12 � 
) �
� � ���%� � � � � 
 � (12)

Then, on matching the solutions Eqs. (8), (9) at
� � �

we find

� � � ���*) � � � ! � � �����+& � ) � � � ! � � � 
 & � ���%� �'& � ) � � � ! � � � 
) � � � ! � � �����,& � ) � � � ! � � � 
�� � �%� �-& � ) � � � ! �7� � 
 �	�� � & � � & � ���) � � � ! �7� �����,& � ) � � � ! �7� � 
.� � �%� �'& � ) � � � ! � � � 
 � (13)

Eqs. (8), (9), (13) together with the inverse of Eqs. (12) enable us to construct the solution, � � �	� 
 . In Fig. 3 we show the contour plot of

, � � ��� 
 inside the superconducting slab for the
case / � $

, where / � ��� ! .
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Fig. 3. Lines of constant vector potential
�

around an electrically isolated wire inside a superconducting
slab for ����� . Here, ���	��

� and ������
�� are the dimensionless coordinates. The contour values range
from

� 
�� � � ������� � ��� to
� 
�� � � ������� �� 
! with ����� �
� � increments.

Now we can discuss the main quantity of interest, namely the total screening current, � , inside
the superconducting slab. � can be obtained by integrating the London equation over the cross
section of the slab:

� �'& $(*) ! � � �
� � � � � 


� 
 � �
, � � �	� 
 � (14)

The singular part of Eq. (9),

, � � � � , contributes � � � � � � & � ) � � � , where� � � 1 / � )2 ��
) �#") / � � " � � � $ " / � � " �
% (15)

and
� � is the Macdonald function of the first order. The regular part,

, � � � , contributes �
� � � �& � � , so that the total screening current � � �

� � � � � � � � � � & � ) . Note that this conclusion is
independent of / . Thus there is perfect screening even for thin slabs with

� # ! .
There is an important question of how fast does the screening current saturate (with increasing

� dimension of the slab) to
& � ) . In a thick slab

�'& ! ,

,
�

, � � � � and the answer is clear: the
screening takes place at distances � ! from the screw dislocation, and at larger distances

,
is

exponentially small. A more interesting and perhaps unexpected result emerges when we focus
on superconducting slabs which are not in the thick limit, for which

, � � � can not be neglected.
In that case we find that at large

� � � , ,
�

,�� � �)( �"�7� and the screening current decays much
more slowly than for thick slabs. In fact, restricting ourselves for simplicity to the plane

� � �
and taking / � $

, we find that for
� * � & $

(where
* � � � ! ), � � � � � �	� 
(*) � ) � � ��$ $�
 1�+
	 * � � � � � 	 � � 1�+�+ * � � � � � � � $�$ 1�� * �-, � (16)
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The general procedure that we have used to obtain the asymptotic expansion Eq. (16) is presented
in the Appendix. Applying the same procedure to the case

� � �
and taking again / � $

, we
obtain the leading asymptotic behaviour

, � � � � � ��� 
 � (*) � ) � � ��$ ��� � 1 1 * � � . Note that along both� � �
and

� � �
, we find

,�� � � ( � � � .

5 Conclusions

In conclusion, we have provided further arguments supporting our previous interpretation of
the observed anomalous � -axis critical current densities in Bi2212 thin films [8] in terms of
superconducting filaments [9]. In particular, we have argued that the interaction between the� -axis screw dislocations and flux lines is attractive and thus the superconducting filaments are
stable. Moreover, within a model calculation we have shown that the bulk current which screens
the filament decays only as a power-law of the distance from the filament. Thus, even stacks with
cross-section dimensions comparable to the � -axis penetration depth ! should exhibit enhanced
critical current densities, if they contain � -axis screw dislocations.

An alternative explanation of the large � -axis critical currents in Bi2212 thin films and of
the associated absence of intrinsic Josephson phenomena has been given by Inoue et al. [7].
Similarly to the filament picture, Inoue et al. attribute these effects to imperfections of the thin
films. They differ, however, in their choice of the relevant imperfections: in [7] it is assumed
that the strong � -axis superconductivity which dominates the � -axis transport is realized at the
boundaries of the grains forming the film.

By applying a high-temperature annealing in O � , Inoue et al. were able to grow high-quality
thin films with grains larger than 5 ( m in diameter, which did exhibit intrinsic Josephson phe-
nomena [7]. This was taken as an evidence that it is the grain boundaries which short-circuit
the � -axis supercurrent. However, the high-temperature annealing presumably lowers also the
screw dislocation density. Therefore the results of [7] might be consistent also with the filament
picture. Further measurements are needed in order to discriminate between these two scenaria.

Appendix

We wish to establish the asymptotic behaviour of

, � � � in the superconducting slab for
�5� �

and
large � . The approximate technique we shall use is based on the Riemann-Lebesgue lemma [18]
which follows.

Consider a Fourier-type integral of the form

� � * 
 � � 
) ��� � � ����� � � 
 � (17)

where the function
� � � 


does not depend on the positive parameter
*

. Let
� � � 


be continu-
ously differentiable in the interval � � � � 
 , � ��� � � � 
 be its � -th derivative, and the definite integrals	 
) ��� � � ��� � ��� � � � 
 , � � $ � 1 � ��� � are uniformly convergent for all sufficiently large values of

*
.

Then the expression

� � * 
 � 


� � ) � ��� � � � 
 + �* 8 �
� � � * ���

(18)
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is an asymptotic expansion of Eq. (17). We only note that the way to obtain Eq. (18) is via
integrating by parts Eq. (17), yielding successively new terms of the expansion.

For the purpose of the present problem, we introduce
� � * � " 
 by writing, � � � � � � * 
 � (*) � )2 � � � � 
) ��" � � * � " 
 � (19)

where
� � * � " 
 � 	 
) ��� � � ��� � � � � " 
 ,
� � � � " 
 � ��� � � � " 
) � � � $ �����+& � / ) � � � $ 
.� � �%� �-& � / ) � � � $ 


��� /) / � � " � � � � " / � � " � 
 & � � ) � " / � � " � 
�� � (20)

According to the Riemann-Lebesgue lemma, the asymptotic expansion for

, � � � � � � * 
 as
* � �

has the form,$� � � � � � * 
(*) � ) � & $2 � * � ��
) �#" � � �-� � � � " 
 � $2 � * � ��
) �#" � � � � � � � " 
 & $2 � * , ��
) �#" � ��� � � � � " 
 � (21)

where

� � �-� � � � " 
 � & � � � & � / 
 � ) � " / � � " � 
 & / ����� & � / 
 � � � & � / 
 � � � ) / � � " � 
) / � � " � �
� � � � � � � " 
 � + � � � & � / 
 � $ � " � � /!�%��� & � / 
 & 1 �%�	� & � � / 
�
 � ) � " / � � " � 
� +	 / � � � & � � / 
 � � � ) / � � " � 
) / � � " �� � & � �$� " � 
 �%� �'& � / 
.� " � ��� �'& � + / 
.� 
 / � ���,& � / 
.� / �����,& � + / 
�
 �
� ��� � � � � " 
 � & 


� � � � & � � / 
 � ) � " / � � " � 

� � 	 � $�
 &�� " � & " � ��+ / � 
 �%� �-& � 1 / 
 & � + � � " � & " � & + / � 
 ��� �'& � 	 / 
&�� � 1�+$��1 " � 
 / �����+& � 1 / 
.�	+ � & $ � 1 " � 
 / �����,& � 	 / 
�	+ � 	 
 � $�� " � � " � & 
 / � 
�
& 
$ � / � � � & , � / 
 � � � ) / � � " � 
) / � � " �� � 1 � $
� 1 ��1 	 " � � " � & +�+ / � 
 �%� �-& � / 
 & + � $ � " � � " � & 1 $ / � 
 �%� �-& � + / 
� � " � ��+ / � 
 �%� �-& � 
 / 
 &�� + � ��� ��	 " � 
 / �����,& � / 
& � $ + 
 & $ � " � 
 / � ���,& � + / 
.��+ � $ ��1 " � 
-� ���,& � 
 / 
�
 �

Taking the integrals over
"

in Eq. (21) numerically, we obtain for / � $
the result quoted in

Eq. (16).
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