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We calculate the total energy (the matter plus fields) of the universe considering Bergmann-
Thomson’s energy-momentum formulation in both Einstein’s theory of general relativity
and tele-parallel gravity on two different space-times; namely Reboucas-Tiomno-Korotkii-
Obukhov and the Gödel-type metrics. We also compute some kinematical quantities for these
space-times and find that these space-times have shear-free expansion and non-vanishing
four-acceleration and vorticity. Different approximations of the Bergmann-Thomson energy-
momentum formulation in these different gravitation theories give the same energy density
and agree with each other. The results advocate the importance of energy-momentum defini-
tions.

PACS: 04.40.-q; 04.50.+h

1 Introduction

The problem of energy localization is one of the oldest and most controversial problems which
remain unsolved since the advent of Einstein’s theory of general relativity [1]. Recently, this
problem argued in tele-parallel gravity; It has been worked out by many physicists [2–10]. After
Einstein’s original work [11] on energy-momentum formulations, various definitions for energy-
momentum densities were proposed: e.g. Tolman, Papapetrou, Landau-Lifshitz, Bergmann-
Thomson, Møller, Weinberg, Qadir-Sharif and also tele-parallel gravity analogs of some of them.
Except for the Møller formulation, these energy-momentum definitions are restricted to calcu-
late the energy-momentum distribution in quasi-Cartesian coordinates. Møller proposed an ex-
pression which could be applied to any coordinate system. The notion of energy-momentum
complexes was severely criticized for a number of reasons. First, the nature of a symmetric and
locally conserved object is a non-tensorial one; thus its physical interpretation appeared obscure
[12]. Second, different energy-momentum complexes could yield different energy-momentum
distributions for the same gravitational backgrounds [13]. Finally, energy-momentum complexes

1E-mail address: oktay231@yahoo.com

0323-0465/05 c© Institute of Physics, SAS, Bratislava, Slovakia 537



538 O. Aydogdu et al.

were local objects while it was usually believed that the suitable energy-momentum of the grav-
itational field was only total, i.e. it cannot be localized [14]. For a long time, attempts to deal
with this problem were made only by proposers of quasi-local approach [15, 16].

There have been several attempts to calculate energy-momentum densities by using these
energy-momentum definitions associated with many different space-times [17–21]. In Ref. [17]
Virbhadra showed that different energy-momentum formulations gave the same energy distribu-
tion as in the Penrose energy-momentum formulation by using the energy and momentum defini-
tions of Einstein, Landau-Lifshitz, Papapetrou and Weinberg for a general non-static spherically
symmetric metric of the Kerr-Schild class. Cooperstock and Israelit [22] found the zero value
of energy for any homogenous isotropic universe described by the Friedmann-Robertson-Walker
metric in the context of general relativity. This interesting result influenced some general rela-
tivists such as Rosen [23], Johri et al. [24], Banerjee and Sen [25]. Johri et al. found, using the
Landau-Liftshitz energy-momentum definition, that the total energy of an Friedmann-Robertson-
Walker spatially closed universe was zero at all times. Banerjee and Sen who investigated the
problem of total energy of the Bianchi-I type space-times using the Einstein complex, obtained
that the total energy was zero. This result agrees with the studies of Johri et al. since the
line element of the Bianchi-I type space-time reduces to the spatially flat Friedmann-Robertson-
Walker line element in a special case. Vargas [9] found, using the definitions of Einstein and
Landau-Lifshitz in tele-parallel gravity, that the total energy was zero in Friedmann-Robertson-
Walker space-times. This result agrees with the previous works of Cooperstock-Israelit, Rosen,
Banerjee-Sen, Johri et al. Later on, Saltı and his collaborators considered different space-times
for various definitions in tele-parallel gravity to obtain the energy-momentum distributions in
a given model. First, Saltı and Havare [26] considered the Bergmann-Thomson’s definition in
both general relativity and tele-parallel gravity for the viscous Kasner-type metric. In another
work, Saltı [27], using the Einstein and Landau-Lifshitz complexes in tele-parallel gravity for
the same metric, found that total energy and momentum distributions were zero. Their results
agree with previous results obtained in Refs. [9,22–25]. At last, Aydogdu and Saltı [28] used the
tele-parallel gravity analog Møller’s definition for the Bianchi-I type metric and found that the
total energy was zero.

The basic purpose of this paper is to obtain the total energy in Reboucas-Tiomno-Korotkii-
Obukhov (RTKO) and the Gödel-type metrics by using the energy-momentum expression of
Bergmann-Thomson in both general relativity and tele-parallel gravity. We will proceed accord-
ing to the following scheme. In section 2, we give the RTKO and Gödel-type space-times and
find some kinematical quantities associated with these metrics. In section 3, we give short brief
of energy and momentum pseudo-tensors. Section 4 gives us the energy and momentum defini-
tion of Bergmann-Thomson in general relativity and its tele-parallel gravity analog, respectively.
In section 5, we calculate the total energy densities. Finally, we summarize and discuss our re-
sults. Throughout this paper, the Latin indices (i, j, ...) represent the vector number, and the
Greek ones (µ, ν,...) represent the vector components; all indices run from 0 to 3. We use units
where G = 1 and c = 1.



Energy in Reboucas-Tiomno-Korotkii-Obukhov and Gödel-type... 539

2 The RTKO and Gödel-Type Space-Times

In this section we introduce the RTKO and Gödel-type metrics and then using these space-times
we make some required calculations and find some kinematical quantities in these models.

2.1 The RTKO Model

The RTKO space-time is defined by the line element [29]

ds2 = a2(t)
[

−(dt + mexdy)2 + dx2 + e2xdy2 + dz2
]

, (1)

where x, y, z are (real) spatial coordinates. The parameter m is a constant that can be restricted
to be positive without the loss of generality and is called rotation parameter. The line element
which is given above does not contain closed time-like curves if and only if m belongs to the
interval [0,1) because it is only then that the metric induced on the sections of constant time is
positively definite [30, 31]. For the line element (1), gµν is defined by

gµν = −a2δ0

µδ0

ν + a2δ1

µδ1

ν + (1 − m2)a2e2xδ2

µδ2

ν + a2δ3

µδ3

ν − ma2ex[δ0

µδ2

ν + δ2

µδ0

ν ], (2)

and its inverse gµν

gµν =
(m2 − 1)

a2
δ

µ
0
δν
0

+
1

a2
δ

µ
1
δν
1

+
e−2x

a2
δ

µ
2
δν
2

+
1

a2
δ

µ
3
δν
3
−

me−x

a2
[δµ

0
δν
2

+ δ
µ
2
δν
0
]. (3)

The non-trivial tetrad field induces a tele-parallel structure on space-time which is directly related
to the presence of the gravitational field, and the Riemannian metric arises as

gµν = ηabh
a
µhb

ν . (4)

Using this relation, we obtain the tetrad components

hi
µ = aδi

0
δ0

µ + aδi
1
δ1

µ + aexδi
2
δ2

µ + aδi
3
δ3

µ + maexδi
0
δ2

µ (5)

and their inverses are

h
µ
i =

1

a
δ0

i δ
µ
0

+
1

a
δ1

i δ
µ
1

+
e−x

a
δ2

i δ
µ
2

+
1

a
δ3

i δ
µ
3
−

m

a
δ2

i δ
µ
0
. (6)

After the pioneering works of Gamow [32] and Gödel [33], the idea of global rotation of the
universe has become a considerably important physical aspect in the calculations. For the line
element which describes the RTKO universe, one can introduce the tetrad basis

θ0 = adt + maexdy, θ1 = adx, θ2 = aexdy, θ3 = adz. (7)

With the co-moving tetrad formalism, the kinematical variables of this model can be expressed
solely in terms of the structure coefficients of the tetrad basis defined as

dθα =
1

2
Σα

βγθβ ∧ θγ . (8)
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By taking the exterior derivatives of the tetrad basis which are given above and using the kine-
matics formulas [34]:

four-acceleration vector: aµ = Σ0
µ0

,
vorticity tensor: ωµν = 1

2
Σ0

µν ,
expansion tensor: ξµν = 1

2
(Σµ0ν + Σν0µ),

expansion scalar: ξ = Σ1
01 + Σ2

02 + c3
03,

vorticity vector: ω1 = 1

2
Σ0

23, ω2 = 1

2
Σ0

31, ω3 = 1

2
Σ0

12,
vorticity scalar: ω = 1

4
[(Σ0

23
)2 + (Σ0

31
)2 + (Σ0

12
)2]1/2,

shear tensor: σµν = ξµν − 1

3
ξδµν ,

we find for the line element (1)

a2 =
2mȧ

a2
, ω3 =

2m

a
, ξ =

6ȧ

a2
, σµν = 0. (9)

We see that the model given in (1) has shear-free expansion and we also note that this model
describes space-time which has non-vanishing four-acceleration and vorticity.

2.2 The Gödel-type Model

In 1949, Gödel found a solution of Einstein’s field equations with cosmological constant for
incoherent matter with rotation [33]. It is certainly the best known example of a cosmological
model which makes it apparent that general relativity does not exclude the existence of closed
time-like world lines, despite its Lorentzian character which leads to the local validity of the
causality principle. Gödel’s cosmological solution has a well-recognized importance which has,
to a large extent, motivated the investigations on rotating cosmological Gödel-type space-times
and on causal anomalies within the framework of general relativity [35, 36]. In cartesian coordi-
nates xα = (t, x, y, z), the Gödel-type metrics are given by [37]

ds2 = (dt −
√

σaemxdy)2 − a2(dx2 + (k − σ)e2mxdy2 + dz2), (10)

where m, σ, k are constant parameters, and a(t) is the time-dependent cosmological scale factor.
For the line element (10), gµν is defined by

gµν = δ0

µδ0

ν − a2δ1

µδ1

ν − a2ke2mxδ2

µδ2

ν − a2δ3

µδ3

ν −
√

σaex[δ0

µδ2

ν + δ2

µδ0

ν ], (11)

and its inverse gµν

gµν = −
k

k + σ
δ

µ
0
δν
0 − a−2δ

µ
1
δν
1 −

e−2x

a2(k + σ)
δ

µ
2
δν
2 − a−2δ

µ
3
δν
3

−
√

σ

a(k + σ)
e−mx[δµ

0
δν
2

+ δ
µ
2
δν
0
]. (12)

Tetrad fields are given by

gµν = ηabh
a
µhb

ν . (13)
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From this relation, we obtain the tetrad components:

hi
µ = δi

0
δ0

µ + aδi
1
δ1

µ +
√

k + σaemxδi
2
δ2

µ + aδi
3
δ3

µ −
√

σaemxδi
0
δ2

µ. (14)

and their inverses are

h
µ

i = δ0

i δ
µ
0

+
1

a
δ1

i δ
µ
1

+
e−mx

a
√

k + σ
δ2

i δ
µ
2

+
1

a
δ3

i δ
µ
3
−

√

σ

σ + k
δ2

i δ
µ
0
. (15)

Now we introduce tetrad bases by

θ0 = dt −
√

σaemxdy, θ1 = adx, θ2 =
√

k − σaemxdy, θ3 = adz, (16)

and we find for the line element (10)

a2 =
ȧ

a

√

σ

σ − k
, ω3 =

m

2a

√

σ

σ − k
, σµν = 0, ξµν =

ȧ

a
δµν . (17)

Using these results, we can say that the model given in (10) has shear-free expansion. And we
also note that this model describes space-time which has non-vanishing four-acceleration and
vorticity.

3 Energy-Momentum Pseudo-Tensors in General Relativity

The conservation laws of energy and momentum for an isolated systems are expressed by a set
of differential equations. Defining T α

β as the symmetric energy and momentum tensor (due to
matter plus fields) the conservation laws are given by definition which is given below.

T α
β,α ≡

∂T α
β

∂xα
= 0, (18)

where

ρ = T 0

0 , ji = T i
0, pi = −T 0

i (19)

are the energy density, the energy current density, the momentum density, respectively, and Greek
indices run over from the space-time labels while Latin indices take the values over the spatial
coordinates.

Crossing from special to general relativity one assumes a simplicity principle which is called
principle of minimal gravitational coupling. As a result of this, the equation which defines con-
servation laws is now

T α
β,α ≡

1
√
−g

∂

∂xα

(√
−gT α

β

)

− Γξ
βνT ν

ξ = 0, (20)

where g is the determinant of the metric tensor gµν(x). The conservation equation may also be
written as

∂

∂xα

(√
−gT α

β

)

= Γξ
βνT ν

ξ . (21)
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Here ζβ = Γξ
βνT ν

ξ is a non-tensorial object. Defining β = t means that the matter energy is
not a conserved quantity for the physical system2. From a physical point of view, the absence
of energy conservation can be understood as a possibility of transforming matter energy into
gravitational energy and vice versa. So, this remains a problem and it is widely believed that in
order to solve it one has to take into account the gravitational energy [2, 4, 6, 7].

By a well-known procedure, the non-tensorial object ζβ can be written as

ζβ = −
∂

∂xα

(√
−gϑα

β

)

, (22)

where ϑα
β are functions of the metric tensor and its first order derivatives. Therefore, the energy-

momentum tensor of matter T α
β is replaced by

Ωα
β =

√
−g(T α

β + ϑα
β), (23)

which is called the energy-momentum complex, since it is a combination of the tensor T α
β and

a pseudo-tensor ϑα
β , which describes the energy and momentum of the gravitational field. The

energy-momentum complex satisfies a conservation law in the ordinary sense, i.e.

Ωα
β,α = 0, (24)

and it can be written as

Ωα
β = Ξαλ

β,λ, (25)

where Ξαλ
β are the super-potentials and they are the functions of the metric tensor and its first

derivatives.
It is obvious that the energy and/or momentum complexes are not uniquely determined by the

condition in which usual divergence is zero since it can always add a quantity with an identically
vanishing divergence to the energy-momentum complex.

4 Bergmann-Thomson’s Energy and Momentum Formulation

In this section, we introduce Bergmann-Thomson energy-momentum formulation. First, we give
this formulation in general relativity and then we give its tele-parallel gravity version.

4.1 Bergmann-Thomson’s energy-momentum formulation in general relativity

The energy-momentum prescription of Bergmann-Thomson [5] is given by

Λµν =
1

16π
Πµνα

,α , (26)

where

Πµνα = gµβV να
β (27)

2It is possible to restore the conservation law by introducing a local inertial system for which at a specific space-time
point ζβ = 0, but this equality by no means holds in general.
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with

V να
β = −V αν

β =
gβξ√
−g

[

−g
(

gνξgαρ − gαξgνρ
)]

,ρ
. (28)

The Bergmann-Thomson energy-momentum prescription satisfies the local conservation laws

∂Λµν

∂xν
= 0 (29)

in any coordinate system. The energy and momentum (energy current) density components are
respectively represented by Λ00 and Λa0. The energy and momentum components are given by

P µ =

∫ ∫ ∫

Λµ0dxdydz. (30)

For the time-independent metric one has

P µ =
1

16π

∫ ∫

Πµ0aκadS. (31)

Here, κβ is the outward unit normal vector of the infinitesimal surface element dS; P i’s are the
momentum components P 1, P 2, P 3 and P 0 is the energy.

4.2 Bergmann-Thomson’s energy-momentum formulation in tele-parallel gravity

Tele-parallel gravity is an alternative approach to gravitation [38] which corresponds to a gauge
theory for the translation group based on the Weitzenböck geometry [39]. In this theory, gravita-
tion is attributed to torsion [40], which plays the role of force [41], whereas the curvature tensor
vanishes identically. The fundamental field is represented by a nontrivial tetrad field, which gives
rise to the metric as a by-product. The last translational gauge potentials appear as the nontrivial
part of the tetrad field, thus induces on space-time a tele-parallel structure which is directly re-
lated to the presence of the gravitational field. The interesting point of tele-parallel gravity is that,
due to gauge structure, it can reveal a more appropriate approach to consider the same specific
problem. This is the case, for example, of the energy-momentum problem, which becomes more
transparent when considered from the tele-parallel point of view.

The energy-momentum complex of Bergmann-Thomson in tele-parallel gravity [9] is given
by

hBµν =
1

4π
∂λ(gµβU νλ

β ), (32)

where h = det(ha
µ) and U νλ

β is the Freud’s super-potential

U νλ
β = hS νλ

β . (33)

Here, Sµνλ is the tensor

Sµνλ = k1T
µνλ +

k2

2
(T νµλ − T λµν) +

k3

2
(gµλT

βν
β − gνµT

βλ
β) (34)
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with k1, k2 and k3 being the three dimensionless coupling constants of tele-parallel gravity [40].
For the tele-parallel equivalent of general relativity, the specific choice of these three constants is

k1 =
1

4
, k2 =

1

2
, k3 = −1. (35)

To calculate this tensor we must calculate Weitzenböck connection first

Γα
µν = h α

a ∂νha
µ, (36)

and after this we get torsion of the Weitzenböck connection

T
µ
νλ = Γµ

λν − Γµ
νλ. (37)

For the Bergmann-Thomson complex, we have

Pµ =

∫

Σ

hB0

µdxdydz, (38)

where Pi’s are the momentum components P1, P2, P3, while P0 gives the energy, and the inte-
gration hyper-surface Σ is described by x0 = t = constant.

5 The total energy of the universe in the RTKO and Gödel-Type Metrics

This section gives us the total energy of the universe based on the RTKO and Gödel-type metrics
in both general theory of relativity and tele-parallel gravity.

5.1 Solutions in the RTKO model

Considering the line element (1) for the equations (27) and (28), the required components of
Πµνα are

Π000 = 0, Π001 = 2(m2 − 1)ex. (39)

Substituting these results into (26), we find that

Λ00 =
(m2 − 1)ex

8π
. (40)

Using equations (5) and (6), we find the non-vanishing components of the Weitzenböck con-
nection

Γ0

00 = Γ1

10 = Γ2

20 = Γ3

30 =
ȧ

a
, Γ2

21 = 1, (41)

where ȧ indicates derivative with respect to t. The corresponding non-vanishing torsion compo-
nents are then

T 1

01 = T 2

02 = T 3

03 =
ȧ

a
, T 2

12 = 1. (42)
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Taking these results into equation (34), the non-zero components of the tensor S νλ
µ are

S001 =
(m2 − 1)

2a4
, (43)

S002 =
2mȧ(m2 − 1)e−x

2a5
, (44)

S012 =
me−x

2a4
, (45)

S201 =
−me−x

2a4
, (46)

S313 =
−1

2a4
, (47)

S101 = (1 − m2)
ȧ

a5
, (48)

S202 = (1 − m2)
ȧe−2x

a5
, (49)

S303 = (1 − m2)
ȧ

a5
. (50)

Now, using equation (32) with (33), the total energy and non-vanishing momentum components
are

hB00 =
(m2 − 1)ex

8π
. (51)

5.2 Solutions in the Gödel-type model

To obtain energy density, we can substitute the line element (1) into equations (27) and (28). The
required components of Πµνα are obtained as

Π000 = 0, Π001 = −
2kmaemx

(k + σ)
1

2

. (52)

Substituting these results into (26), we get

Λ00 = −
kmaemx

8π(k + σ)
1

2

. (53)

Considering equations (5) and (6), the non-vanishing Weitzenböck connection components are

Γ1

10 = Γ2

20 = Γ3

30 =
ȧ

a
. (54)

The corresponding non-vanishing components of torsion are found:

T 1

01 = T 2

02 = T 3

03 =
ȧ

a
, T 2

12 = m. (55)



546 O. Aydogdu et al.

Using these results and equation (34), the non-vanishing components of the tensor S νλ
µ are

S001 = −
km

2(k + σ)a2
, (56)

S002 =
3kȧ

√
σ

2a2(k + σ)2
e−mx, (57)

S012 = −
m
√

σ

2(k + σ)a3
e−mx, (58)

S313 =
k3

2a4
, (59)

S101 =
ȧk

a3(k + σ)
, (60)

S202 =
ke−2mx

a3(k + σ)2
, (61)

and

S303 = S101, S201 = S012, (62)

and, if we use (32) and (33), the total energy and non-vanishing momentum components are

hB00 = −
kmaemx

8π(k + σ)
1

2

. (63)

6 Summary and Conclusions

The definition of energy-momentum localization in the general theory of relativity has been
very exciting and interesting; however, it has been associated with some debate. Recently, some
researchers have been interested in studying the energy content of the universe in various models.

Objective of the present paper is to show that it is possible to solve the problem of the energy
localization in both general theory of relativity and tele-parallel gravity by using the energy-
momentum formulations. First, we found some kinematical quantities of the universe based on
the RTKO and Gödel-type line elements and after these calculations of the total energy (due to
matter plus fields), we considered two different approaches of the Bergmann-Thomson energy-
momentum definition. Finally, we found that: (a) the RTKO and Gödel-type models describe the
space-times which have shear-free expansion, non-vanishing four-acceleration and vorticity, (b)
the total energy distribution in Bergmann-Thomson’s formulation is found exactly the same in
both of these different gravitation theories and they agree with each other, (c) the results advocate
the importance of energy momentum complexes.
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